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ABSTRACT 

Adaptive optics systems with Shack-Hartmann wavefront sensors require reconstruction of the atmospheric phase error 
from slope measurements, with every sensor in the array being used in the computation of each actuator command. This 
fully populated reconstruction matrix can result in a significant computational burden for adaptive optics systems with 
large numbers of actuators. A method for generating sparse wavefront reconstruction matrices for adaptive optics is 
proposed. The method exploits the relevance of nearby slope measurements for control of an individual actuator, and 
relies upon the limited extent of the influence function for a zonal deformable mirror. Relying only on nearby sensor 
information can significantly reduce the calculation time for wavefront reconstruction. In addition, a hierarchic 
controller is proposed to recover some of the global wavefront information. The performance of these sparse wavefront 
reconstruction matrices was evaluated in simulation, and tested on the Palomar Adaptive Optics System. This paper will 
present some initial results from the simulations and experiments. 
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1. INTRODUCTION 

Many large ground based astronomical telescopes use adaptive optics (AO) systems to provide a real time wavefront 
compensation for atmospheric turbulence. Adaptive optics uses a reference source to measure the wavefront information 
and feedback to a deformable mirror (DM) far correction ['I. The nature of the atmospheric turbulence requires the 
wavefront to be spatially sampled at sizes on the order of the coherent length of turbulence, which is about 30 cm for 
near IR, and at speed much faster than the characteristic frequency of the turbulence, which is about tens of hertz. 
Current A 0  systems typically involve hundreds of actuators and system running at speed of 300 - 1000 Hz. Future large 
telescopes and the increasing requirements of current A 0  system will require significantly more actuators and sensors as 
they will increase proportionally to the square of the telescope's diameter. 

Most high order A 0  systems use a S h a c k - " a n n  sensor which measures the slops of the wavefront across each 
subapertures. The correcting wavefront phases at the DM actuator locations are estimated fiom the measured subaperture 
slopes. In a real time A 0  operation, the measured wavefront slopes, which are usually represented by centroid positions 
of the reference source in each subaperture, are multiplied by a wavefront reconstruction matrix to calculate the desired 
DM actuator positions. This reconstruction matrix is based on a weighted pseudo-inverse of the influence matrix fiom 
actuator displacements to sensor measurements, and is in general fully populated. The entire sensor vector is therefore 
required to give a good estimate of global wavefront error at any point. For an A 0  system with n subapertures across the 
entire aperture the number of subapertures and DM actuators are of order n2. With 2 slope measurements from each 
subaperture the number of multiply-accumulation calculations for each wavefront reconstruction is about 2n4. Since the 
n increases linearly with the telescope diameter D the computational burden for larger telescope such as CELT [*I could 
be potentially unacceptable. 



One approach to reducing computation is based on using spatial Fourier transforms [31; the resulting computations are of 
order n210g(n2) rather than n4 for the full matrix computation. For more general sensor/actuator geometries, similar 
approaches can be used provided that there is some underlying circulant structure to the problem [41. A conjugate 
gradient approach can be used to solve the problem iteratively retaining only sparse matrix operations, and using pre- 
conditioning to improve convergence [51. More general iterative approaches are briefly discussed in Hardy [ 1 1  and form 
the basis of the sparse matrix approach of Wild [61. Other sparse matrix approaches have also been suggested [71, however 
the reconstructors are not in general optimal. 

We have studied a sparse matrix method which exploits the relevance of nearby slope measurements for control of an 
individual actuator, and relies upon the limited extent of the influence function for a zonal deformable mirror. Relying 
on only the nearby sensor information can significantly reduce the calculation time for wavefront reconstruction. 
However, with this local approach, performance on low spatial order modes suffers, and a hierarchic approach is needed 
to recover global mode separately. The performances of these sparse wavefront reconstruction matrices were evaluated 
in simulations and experiments on the Palomar Adaptive Optics System (PALAO). Detailed simulations of the localized 
least square sparse matrices and hierarchic controllers have been done by MacMartin and can be found in reference ['I. 
This paper describes the local and hierarchic approach for sparse reconstruction matrices, presents experimental 
evaluations of these sparse matrices obtained at Palomar Observatory, and compares the experimental results with the 
analytical predictions ['I. 

In section 2 we will present a brief introduction of the sparse matrices theory. We then describe our sparse matrices 
experiment using PALAO and present some of the results which characterize the performance of the sparse matrices in 
section 3. We will also try to compare the experimental results with our simulation predictions. Finally, in section 4 we 
will summarize our experience with these sparse matrices and discuss our future development of sparse matrix 
technique. 

2. SPARSE WAVEFRONT RESONSTRUCTION MATRICES 

For a wavefront sensor which measures the subaperture wavefront slopes s, the influence of the phase from the DM 
actuators w is defined by the geometric matrix A as 

s = A w + n  (1) 

where II is the noise in the measurement. In absence of sensor noise, the reconstruction matrix A+ which is used in A 0  
system to calculate the desired DM actuator positions from the measured wavefront slopes is the pseudo-inverse of the 
geometric matrix A,  

= A'S = ( A T A ) - ' A ~ ~  

Although the geometric matrix A is sparse due to the localized influence of DM actuators the reconstruction matrix A+ is 
generally fully populated. The physical interpretation of this is that the absolute displacement can only be estimated from 
relative measurements by integrating those measurements to the boundary of the domain; given a slope between two 
locations, one cannot determine whether a phase point is high or the other is low without considering the entire domain. 

Upon a close exam of the reconstruction matrix A' one notices that the matrix components for each actuator are 
dominated by the influence of slope measurements from nearby subapertures and the contributions from other 
subapertures are decline rapidly as the distance between the actuator and subaperture increases. This is because each DM 
actuator has its limited influence of the wavefront phase. A brute force approach to make a sparse A+ is to simply 
truncate the matrix so that each actuator uses only the nearby subapertures and the contributions of the slope 
measurements from other subapertures are discarded. This would significantly limit the number of non-zero components 
in the matrix. For a regular discrete DM actuator and Shack-Hartmann subaperture layout the truncated reconstruction 
matrix has a banded structure. This can be easily coded into the A 0  reconstructor so that instead of using the entire 
vector only the related slope values are used [91. In this way the required reconstruction calculation is of order 2kn2 



instead of 2n4. The constant k = dxd is the number of subapertures used for each actuators in the sparse matrix, which is 
only depend the size of local influence region d, and unlike n, it doe not increase with the aperture diameter D. By 
reducing the dependence of n to the telescope diameter D from power of 4 to 2, the truncated sparse matrix can 
significantly reduce the reconstruction calculations for large aperture telescopes. In principle, truncating the A+ by 
zeroing elements corresponding either to distant sensors or to those with small gain is unfavorable because the direct 
truncation does not optimize the local information for each actuator. However, the reconstructor gain does decay with 
distance from the actuator, and thus the performance of truncated reconstruction matrix, as will be shown in the next 
section. is still reasonable. 

A proper way to utilize the local wavefront slope information around each actuator is to reconstruct the phase for the 
actuator using the slopes measured from the nearby subapertures by the least square method, an approach we call 
“localized least square” method. Like the truncated sparse matrix, the sparse matrix generated by the localized least 
square method has about 2knz non-zero components, but the localize least square method provides an optimized 
estimation for each actuator using the slopes from the dxd subapertures that surround the actuator. The simulation for 
predicting the performance degradation of this type of localized controller relative to the global modes is that this type of 
sparse matrix can be interpreted as a spatially high-pass filter with the spatial frequency response given by 

g ( k , , k , ) =  1 - sinc(k,d)sinc(k,d) (3) 

Here the k,=m,ni‘D, k,=m,ni‘D (m,, my are integers) are the wave number in two orthogonal directions, and thus the gain 
on the lowest spatial frequency mode is g l j  = sinc2(WD). Even for modest d/D there is a significant reduction in low 
frequency gain. While the sparse reconstruction matrix maintains good performance on high spatial wave number 
displacements, the gain is reduced on roughly the first (D/dj2 low wave numbers displacements, the global mode with 
half-wavelength between d and D. The gain lost for the lower spatial wavefront modes have also been observed in the 
experiment. 

A hierarchic approach can be used to recover global mode performance without losing the computational savings of the 
localized controllers. Performance at low spatial frequencies can be improved by estimating the information that the 
localized estimator does not by adding extra global measurements. This consists of three steps: (1) spatial filtering (e.g. 
averaging over a region of several subapertures) of the sensor information and condensing into a reduced set of data; (2) 
estimating global parameters from this condensed data, and (3) distributing these global parameters over the entire DM 
to combine with the localized estimations. Although it is not the only choice, the global parameterization is chosen to be 
geometrically similar to that of the full problem, but with different spatial scale. This makes the addition of further layers 
of hierarchy a simple extension. Also, by maintaining geometric similarity, the same process can readily be repeated 
over multiple scales. A different control bandwidth could be obtained for different spatial scales (e.g. to compensate for 
different disturbance covariance) by computing the control as the sum of contributions from the different hierarchic 
layers. The computation burden for the hierarchic control will increase due the extra layer@) reconstruction calculation 
for the global modes. However, the condensed data set limits the number of extra calculations to the order of 2(D/dj2. In 
the limit of Zog2(n2) layers one might expect the total hierarchic reconstruction calculation of about n210g2(n2j, a scaling 
similar to that of FFT approach [31, 

3. SPARSE MATRICES EXPERIMENTAL RESULTS 

The Palomar Adaptive Optics system [‘‘I has been used to test the sparse matrices described in above section. A facility 
A 0  instrument for the Palomar 5-meter Hale Telescope, PALAO has a Shack-Hartmann wavefront sensor with 16 
subapertures across the diameter of the telescope, a DM with 241 active actuators, and a fast steering mirror (FSM) for 
overall tip-tilt correction. Both subaperture and actuator lie in a square grid with 4 DM actuators at the corners of each 
subaperture in the standard Fried geometry. An infrared camera system, the Palomar High Angular Resolution Observer 
(PHARO), provides IR imaging and coronagraph for PALAO. PALAO became a facility instrument in May of 2000 and 
the system routinely achieves Strehls of 50 - 60% (in K band) thus providing a good testbed for A 0  technique 
development. 



We have been using the PALAO as a testbed to study the sparse reconstruction matrices. All three types of sparse 
matrices discussed in section 2, including truncations of a full least square matrix, localized least square, and a hierarchic 
reconstructor, were tested. We tested both truncated and localized least square sparse matrices with influence regions 
varying from the d = 2 (i.e. each actuator is driven by 2x2 subapertures), which is the sparsest, to d = 12. The truncation 
sparse matrices were generated from a full least square reconstruction matrix. We tested one hierarchic matrix which 
was constructed with a d = 4 localized least square method with an additional global mode reconstructor which senses 
low order modes on 4 x 4  points over the entire aperture. During tests each sparse matrix as well as the full least square 
reconstruction matrix was sequentially loaded into the PALAO's wavefront reconstructor and then the A 0  loop was 
closed, Wavefront sensor data was recorded for about 60 seconds and three PHARO K band images were taken. The 
recorded wavefront sensor data includes status of DM and FSM loops, subaperture centroids, subaperture fluxes, FSM 
positions and residuals, and DM actuator positions and residuals. The PALAO system update rate is 500 Hz and the 
telemetry recorder can sustain a recording rate of 100 Hz, i.e. every 5'h frame of data. The sparse matrices have been 
tested both on bright (MY < 6 mag.) and faint stars (Mv > 8 mag.) as well as under different atmospheric seeing 
conditions. In the experiment, although many elements of the sparse matrices are zeros, the matrices were still 
maintained in the full matrix format and loaded into the wavefront reconstructor as a regular matrix, and the 
reconstructor still performed the full matrix calculation. This did not take the advantage of the sparse matrices and the 
number of reconstruction calculation remained the same. Experiments in this fashion allow us to directly compare the 
performance of the sparse matrices. The experiments have tested the performance of the sparse matrices under real 
atmospheric turbulence. The recorded real time wavefront data have provided us with detailed information on wavefront 
error's spatial and temporal properties for different reconstruction matrices. Analysis of data has shown that the 
performance of sparse matrices behaved similarly for both bright and faint stars, though the A 0  system tends to have 
larger residual wavefront errors due to the lower signal-to-noise ratio (SNR). To illustrate the difference between the 
sparse matrices and to distinguish the characteristics of the sparse matrices we use the result fiom a bright star 
(SA064701, a Mv = 5.9 KO star) in this paper. 

Figure 1 shows the rms residual wavefront errors for the A 0  closed-loop performance using different sparse matrices. 
The residual wavefront error is calculated from the recorded wavefront sensor data and the PHARO image. For each 
sparse matrix the closed-loop residual wavefront dcomes from two sources: (1) the A 0  system error qys which is the 
sum of errors from the servo time delay, residual tip-tilt, DM fitting, DM registration, non-common path calibration, and 
wavefront sensor measurement error [lo'. This part of error is estimated using the Strehl ratio from the PHARO images 
taken when the PALAO is closed with the full matrix; and (2 )  the error caused by the sparse matrix qparse which is 
calculated from the recorded wavefront sensor slopes when the A 0  loop was closed by a sparse matrix as, 

where nac, is the number of actuator, and the factor of 4 is added in Eq. 4 to account for the DM reflection. The a r  and 
are the reconstructed DM actuator positions in micron from the recorded closed-loop slopes ssparse using full 

matrix A + F U ~  and sparse matrices A'sparse correspondently, i.e. 
asparse , 

In Figure 1 the sparse matrix closed-loop wavefront error d= (qy:+ is plotted against the sparseness of the 
matrices which is indicated by the subaperture influence region size d. The plots show errors from sparse matrices 
generated in all three approaches as described in section 2. We can see from the plot that the wavefront error increases as 
the reconstruction matrix become sparser. However, there is little difference between the truncation, localized least 
square, and hierarchic controller. The plots show that A 0  system error is the dominant component error untii sparseness 
is d 54. This is also reflected in the Strehl ratio plot shown in Figure 2. Our simulations also predict the increase of the 
wavefront error with matrix sparseness. Calibrated by the recorded data the theoretical predictions of the performance 
decay with the matrix sparseness agree with the experimental data. 
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Figure 1. RMS residual wavefront errors versus matrix sparseness. The wavefront error is in unit of nm and the subaperture 
influence size d is in unit of subaperture. 

Using the residual wavefront errors we can predict the final image’s Strehl ratio. The predicted Strehls and the real 
Strehls fiom the PHARO images for each sparse matrix are shown in Figure 2. The figure shows that within the 
fluctuations of data the predicted Strehls are in general agree with the real image. 
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Figure 2. Strehl ratio versus matrix sparseness. Strehl ratio values from both the recorded PHARO images and predictions 
from the calculated wavefront errors are presented. 



Figures 1 and 2 have not shown a difference in performance between the truncation, localized least square, and 
hierarchic control matrices. However, as shown in Figure 3 and 4, more detailed analysis of the recorded wavefront 
sensor data does show that there are distinguishable differences. 

As mentioned in section 2, because the sparse matrices reconstruct the wavefront from local information, correction of 
the low spatial frequency modes will be degraded. This effect can be seen in the recorded DM residuals, which are the 
closed-loop DM actuator residuals (Le. centroids multiplied by the reconstructor). Figure 3 shows the spatial power 
spectral density (PSD) of the DM actuator residuals for the localized least square matrices with different sparseness and 
the hierarchic controller. The PSDs shown the upper panel are radially averaged in each frame and timely averaged over 
10 second of recorded data. To better see the effect of sparseness of the matrices, the plots in the lower panel are the 
normalized PSDs which are normalized by the full matrix PSD. 

DM Residuals PSD - 10" 

P 
a, 

1 2 3 4 5 6 7 8 
Frequency (llcyde) 

Normalized DM Residuals PSD 

Frequency (llcyde) 

Figure 3. Closed-loop DM residuals PSD. Upper panel: DM actuator residuals PSD. The spatial frequency is in unit of 
cycle-' where the cycle is measured by the DM actuator spacing. Lower panel: Normalized PSDs. The normalization is done 
by the PSD of the full matrix. 

Figure 3 shows that as influence region d decreases there is less power in the DM residuals at low spatial frequencies, 
indicating a loss of low spatial order information in the reconstruction. Also, the normalized plots show that for different 
influence size d the PSD peaks at different spatial frequency. This indicates that the sparse matrix not only loses the gain 
for lower order modes but also increase the gain at certain characteristic frequency. This phenomenon agrees with our 
theoretical predictions. In contrast the DM actuator residuals from the hierarchic controller do not lose much power for 
the low order modes. Although it has local influence size of d = 4,  compared to sparse matrix with the same influence 
size, the global reconstruction layer in hierarchic controller has recovered most of the gain for the low order modes. The 
DM actuator residuals PSD for the truncation sparse matrices are similar to that shown in Figure 3. 



Besides the PSD of DM residuals we have also looked into the spatial and temporal properties of the closed-loop 
wavefront errors under the sparse matrices. From the recorded centroid data the wavefront errors are reconstructed using 
the full matrix. The spatial PSD is then calculated for each frame and radially averaged. Then the temporal PSDs are 
calculated for each spatial frequency PSD over the 40 seconds of data. Plots in Figure 4 shows the temporal PSD for a 
few selected spatial frequencies. The temporal Eequency ranges from 0.025 to 50 Hz, determined by the data-recording 
rate of 100 Hz and data length of 40 seconds. Each panel shows results from a sparse matrix with influence region size d 
indicated in the title. For a comparison, data fiom the full matrix is also shown in the upper left panel. As sparseness of 
the matrices increases the low spatial (specially I - 2 cycle) order wavefront error power increases, especially for the 
case of d = 4 and d = 2. For the case of d = 2, one can even argue that the cutoff frequency for the low spatial mode (I 
cycle) has also been pushed lower to less than 10 Hz compared with the full matrix case. Again the recovery of global 
modes by the hierarchic controller has maintained the power of low spatial modes, providing a performance close to the 
full matrix case. The temporal PSDs for the truncation sparse matrices have the similar features shown in Figure 4. 
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Figure 4. Temporal PSD for the closed-loop wavefront error under different sparse matrices. The temporal PSD is 
calculated for each spatial frequency and a few selected spatial frequencies are presented and indicated by different line 
styles. The influence size d of sparse matrix, which the plots generated, is shown in the title of each panel. To reduce the 
scattering and make the plots more readable the plots are smoothed for high frequency (> 2 Hz). 



4. CONCLUSIONS AND FUTURE WORKS 

The real time wavefront reconstruction for the future large aperture ground-based telescopes has posed a big challenge 
on real time computation for AO’s wavefront reconstructor. We have proposed an approach to reduce the fully populated 
reconstruction matrix to a sparse matrix with a banded structure based on the limited influence of the DM actuators. 
Experiments and simulations have shown that as the matrix sparseness increases the accuracy of the wavefront 
reconstruction degrades. This has been understood to be caused by the lost of the global mode information. The lost of 
the lower mode gain in the controller can be predicted. The remedy for this is to add an extra layer of wavefront 
reconstruction from a much reduced sensor data set to sense only the low order modes. This hierarchic control method 
has shown to provide much better wavefront reconstruction without much increase of the calculation burden to the 
reconstructor (scaled - nlog2(n)). Both simulation and experiment have proved its effectiveness. 

The successful generation and implementation of all the sparse matrices, especially the hierarchic controller, have 
validated our models and simulations. The experimental data have agreed with simulation predictions. The modeling and 
simulation can provide a crucial tool in the design of sparse matrices for the future A 0  systems. The experiment on 
PALAO has been a critical step for us to understand the behaviors of these sparse matrices and will continue to provide 
the excellent testbed capabilities for the evaluation of new generation sparse matrices. 

Sparse matrices tests on PALAO have shown that with the exception of extremely sparse matrices (d <= 4 )  the 
dominant limitations of A 0  performance are still the A 0  system errors such as calibrations. The decrease of the closed- 
loop Strehls of images is not significant for the moderately sparsed matrices. Another observation from the experiment is 
that although in principle the truncated sparse matrices are not optimal compared with the localized least square 
matrices, the experiment data have shown little difference, which is contradicted to the predictions kom model. One 
speculation is that it was caused by the imperfect gain tuning for the sparse matrices. 

The modeling and experimental studies on the sparse matrix technique are still ongoing. We plan to study how to 
optimize the matrix sparseness taking into account the decreased computation delay together with the seeing condition. 
The matrix sparseness and the servo time delay are related variables in the system design. A sparser matrix requires less 
reconstruction calculations which will reduce the servo time delay, but will also introduce more wavefront errors. For 
any given A 0  system and atmospheric conditions there should be an optimal sparseness for the system. A realistic model 
will allow us to find this optimal solution. Another issue is to understand the performance of the sparse matrices on the 
laser guide star (LGS) A 0  system. Characteristics of LGS such as non-uniform sensor gain across the pupil may 
complicate the problem. Other approaches, such as variable influence size may need to be implemented to accommodate 
it. Finally, so far we have used only the least square method for the wavefront reconstructions in our sparse matrices 
experiment. When the guide star is faint the least square solution may not be optimal. An optimal sparse estimator may 
provide a better solution for the faint guide star. 
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